3.489 \(\int \frac{\left (c+d x+e x^2+f x^3\right ) \sqrt{a+b x^4}}{x^2} \, dx\)

Optimal. Leaf size=341 \[ -\frac{\sqrt{a+b x^4} \left (3 c-e x^2\right )}{3 x}+\frac{\sqrt [4]{a} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (\sqrt{a} e+3 \sqrt{b} c\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{3 \sqrt [4]{b} \sqrt{a+b x^4}}+\frac{2 \sqrt{b} c x \sqrt{a+b x^4}}{\sqrt{a}+\sqrt{b} x^2}-\frac{2 \sqrt [4]{a} \sqrt [4]{b} c \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{\sqrt{a+b x^4}}+\frac{1}{4} \sqrt{a+b x^4} \left (2 d+f x^2\right )-\frac{1}{2} \sqrt{a} d \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )+\frac{a f \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{4 \sqrt{b}} \]

[Out]

(2*Sqrt[b]*c*x*Sqrt[a + b*x^4])/(Sqrt[a] + Sqrt[b]*x^2) - ((3*c - e*x^2)*Sqrt[a
+ b*x^4])/(3*x) + ((2*d + f*x^2)*Sqrt[a + b*x^4])/4 + (a*f*ArcTanh[(Sqrt[b]*x^2)
/Sqrt[a + b*x^4]])/(4*Sqrt[b]) - (Sqrt[a]*d*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])/2
- (2*a^(1/4)*b^(1/4)*c*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[
b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/Sqrt[a + b*x^4] + (a^(
1/4)*(3*Sqrt[b]*c + Sqrt[a]*e)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a]
 + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(3*b^(1/4)*Sqr
t[a + b*x^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.718692, antiderivative size = 341, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 13, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.433 \[ -\frac{\sqrt{a+b x^4} \left (3 c-e x^2\right )}{3 x}+\frac{\sqrt [4]{a} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (\sqrt{a} e+3 \sqrt{b} c\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{3 \sqrt [4]{b} \sqrt{a+b x^4}}+\frac{2 \sqrt{b} c x \sqrt{a+b x^4}}{\sqrt{a}+\sqrt{b} x^2}-\frac{2 \sqrt [4]{a} \sqrt [4]{b} c \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{\sqrt{a+b x^4}}+\frac{1}{4} \sqrt{a+b x^4} \left (2 d+f x^2\right )-\frac{1}{2} \sqrt{a} d \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )+\frac{a f \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{4 \sqrt{b}} \]

Antiderivative was successfully verified.

[In]  Int[((c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4])/x^2,x]

[Out]

(2*Sqrt[b]*c*x*Sqrt[a + b*x^4])/(Sqrt[a] + Sqrt[b]*x^2) - ((3*c - e*x^2)*Sqrt[a
+ b*x^4])/(3*x) + ((2*d + f*x^2)*Sqrt[a + b*x^4])/4 + (a*f*ArcTanh[(Sqrt[b]*x^2)
/Sqrt[a + b*x^4]])/(4*Sqrt[b]) - (Sqrt[a]*d*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])/2
- (2*a^(1/4)*b^(1/4)*c*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[
b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/Sqrt[a + b*x^4] + (a^(
1/4)*(3*Sqrt[b]*c + Sqrt[a]*e)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a]
 + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(3*b^(1/4)*Sqr
t[a + b*x^4])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 73.2619, size = 308, normalized size = 0.9 \[ - \frac{2 \sqrt [4]{a} \sqrt [4]{b} c \sqrt{\frac{a + b x^{4}}{\left (\sqrt{a} + \sqrt{b} x^{2}\right )^{2}}} \left (\sqrt{a} + \sqrt{b} x^{2}\right ) E\left (2 \operatorname{atan}{\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}} \right )}\middle | \frac{1}{2}\right )}{\sqrt{a + b x^{4}}} + \frac{\sqrt [4]{a} \sqrt{\frac{a + b x^{4}}{\left (\sqrt{a} + \sqrt{b} x^{2}\right )^{2}}} \left (\sqrt{a} + \sqrt{b} x^{2}\right ) \left (\sqrt{a} e + 3 \sqrt{b} c\right ) F\left (2 \operatorname{atan}{\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}} \right )}\middle | \frac{1}{2}\right )}{3 \sqrt [4]{b} \sqrt{a + b x^{4}}} - \frac{\sqrt{a} d \operatorname{atanh}{\left (\frac{\sqrt{a + b x^{4}}}{\sqrt{a}} \right )}}{2} + \frac{a f \operatorname{atanh}{\left (\frac{\sqrt{b} x^{2}}{\sqrt{a + b x^{4}}} \right )}}{4 \sqrt{b}} + \frac{2 \sqrt{b} c x \sqrt{a + b x^{4}}}{\sqrt{a} + \sqrt{b} x^{2}} + \frac{\sqrt{a + b x^{4}} \left (2 d + f x^{2}\right )}{4} - \frac{\sqrt{a + b x^{4}} \left (3 c - e x^{2}\right )}{3 x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(1/2)/x**2,x)

[Out]

-2*a**(1/4)*b**(1/4)*c*sqrt((a + b*x**4)/(sqrt(a) + sqrt(b)*x**2)**2)*(sqrt(a) +
 sqrt(b)*x**2)*elliptic_e(2*atan(b**(1/4)*x/a**(1/4)), 1/2)/sqrt(a + b*x**4) + a
**(1/4)*sqrt((a + b*x**4)/(sqrt(a) + sqrt(b)*x**2)**2)*(sqrt(a) + sqrt(b)*x**2)*
(sqrt(a)*e + 3*sqrt(b)*c)*elliptic_f(2*atan(b**(1/4)*x/a**(1/4)), 1/2)/(3*b**(1/
4)*sqrt(a + b*x**4)) - sqrt(a)*d*atanh(sqrt(a + b*x**4)/sqrt(a))/2 + a*f*atanh(s
qrt(b)*x**2/sqrt(a + b*x**4))/(4*sqrt(b)) + 2*sqrt(b)*c*x*sqrt(a + b*x**4)/(sqrt
(a) + sqrt(b)*x**2) + sqrt(a + b*x**4)*(2*d + f*x**2)/4 - sqrt(a + b*x**4)*(3*c
- e*x**2)/(3*x)

_______________________________________________________________________________________

Mathematica [C]  time = 6.18026, size = 355, normalized size = 1.04 \[ \sqrt{a+b x^4} \left (-\frac{c}{x}+\frac{d}{2}+\frac{e x}{3}+\frac{f x^2}{4}\right )+\frac{1}{6} \left (\frac{12 \sqrt{a} \sqrt{b} c \sqrt{1-\frac{i \sqrt{b} x^2}{\sqrt{a}}} \sqrt{1+\frac{i \sqrt{b} x^2}{\sqrt{a}}} \left (E\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )-F\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )\right )}{\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \sqrt{a+b x^4}}-3 \sqrt{a} d \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )-\frac{4 i a e \sqrt{1-\frac{i \sqrt{b} x^2}{\sqrt{a}}} \sqrt{1+\frac{i \sqrt{b} x^2}{\sqrt{a}}} F\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )}{\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \sqrt{a+b x^4}}+\frac{3 a f \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{2 \sqrt{b}}\right ) \]

Antiderivative was successfully verified.

[In]  Integrate[((c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4])/x^2,x]

[Out]

(d/2 - c/x + (e*x)/3 + (f*x^2)/4)*Sqrt[a + b*x^4] + ((3*a*f*ArcTanh[(Sqrt[b]*x^2
)/Sqrt[a + b*x^4]])/(2*Sqrt[b]) - 3*Sqrt[a]*d*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]] +
 (12*Sqrt[a]*Sqrt[b]*c*Sqrt[1 - (I*Sqrt[b]*x^2)/Sqrt[a]]*Sqrt[1 + (I*Sqrt[b]*x^2
)/Sqrt[a]]*(EllipticE[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1] - EllipticF[I*
ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1]))/(Sqrt[(I*Sqrt[b])/Sqrt[a]]*Sqrt[a +
b*x^4]) - ((4*I)*a*e*Sqrt[1 - (I*Sqrt[b]*x^2)/Sqrt[a]]*Sqrt[1 + (I*Sqrt[b]*x^2)/
Sqrt[a]]*EllipticF[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1])/(Sqrt[(I*Sqrt[b]
)/Sqrt[a]]*Sqrt[a + b*x^4]))/6

_______________________________________________________________________________________

Maple [C]  time = 0.02, size = 339, normalized size = 1. \[{\frac{ex}{3}\sqrt{b{x}^{4}+a}}+{\frac{2\,ae}{3}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+{\frac{f{x}^{2}}{4}\sqrt{b{x}^{4}+a}}+{\frac{af}{4}\ln \left ( \sqrt{b}{x}^{2}+\sqrt{b{x}^{4}+a} \right ){\frac{1}{\sqrt{b}}}}-{\frac{c}{x}\sqrt{b{x}^{4}+a}}+{2\,ic\sqrt{a}\sqrt{b}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{2\,ic\sqrt{a}\sqrt{b}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticE} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+{\frac{d}{2}\sqrt{b{x}^{4}+a}}-{\frac{d}{2}\sqrt{a}\ln \left ({\frac{1}{{x}^{2}} \left ( 2\,a+2\,\sqrt{a}\sqrt{b{x}^{4}+a} \right ) } \right ) } \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2)/x^2,x)

[Out]

1/3*e*x*(b*x^4+a)^(1/2)+2/3*e*a/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x
^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)
*b^(1/2))^(1/2),I)+1/4*x^2*f*(b*x^4+a)^(1/2)+1/4*f*a/b^(1/2)*ln(b^(1/2)*x^2+(b*x
^4+a)^(1/2))-c/x*(b*x^4+a)^(1/2)+2*I*c*b^(1/2)*a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)
*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)
*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-2*I*c*b^(1/2)*a^(1/2)/(I/a^(1/2)*b^(1/
2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4
+a)^(1/2)*EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I)+1/2*d*(b*x^4+a)^(1/2)-1/2*d*a
^(1/2)*ln((2*a+2*a^(1/2)*(b*x^4+a)^(1/2))/x^2)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{b x^{4} + a}{\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^2, x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{\sqrt{b x^{4} + a}{\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^2,x, algorithm="fricas")

[Out]

integral(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^2, x)

_______________________________________________________________________________________

Sympy [A]  time = 7.45978, size = 206, normalized size = 0.6 \[ \frac{\sqrt{a} c \Gamma \left (- \frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, - \frac{1}{4} \\ \frac{3}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 x \Gamma \left (\frac{3}{4}\right )} - \frac{\sqrt{a} d \operatorname{asinh}{\left (\frac{\sqrt{a}}{\sqrt{b} x^{2}} \right )}}{2} + \frac{\sqrt{a} e x \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{1}{4} \\ \frac{5}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac{5}{4}\right )} + \frac{\sqrt{a} f x^{2} \sqrt{1 + \frac{b x^{4}}{a}}}{4} + \frac{a d}{2 \sqrt{b} x^{2} \sqrt{\frac{a}{b x^{4}} + 1}} + \frac{a f \operatorname{asinh}{\left (\frac{\sqrt{b} x^{2}}{\sqrt{a}} \right )}}{4 \sqrt{b}} + \frac{\sqrt{b} d x^{2}}{2 \sqrt{\frac{a}{b x^{4}} + 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(1/2)/x**2,x)

[Out]

sqrt(a)*c*gamma(-1/4)*hyper((-1/2, -1/4), (3/4,), b*x**4*exp_polar(I*pi)/a)/(4*x
*gamma(3/4)) - sqrt(a)*d*asinh(sqrt(a)/(sqrt(b)*x**2))/2 + sqrt(a)*e*x*gamma(1/4
)*hyper((-1/2, 1/4), (5/4,), b*x**4*exp_polar(I*pi)/a)/(4*gamma(5/4)) + sqrt(a)*
f*x**2*sqrt(1 + b*x**4/a)/4 + a*d/(2*sqrt(b)*x**2*sqrt(a/(b*x**4) + 1)) + a*f*as
inh(sqrt(b)*x**2/sqrt(a))/(4*sqrt(b)) + sqrt(b)*d*x**2/(2*sqrt(a/(b*x**4) + 1))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{b x^{4} + a}{\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^2,x, algorithm="giac")

[Out]

integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^2, x)